
OPERATING SYSTEMS
COMPUTER ARCHITECTURES

Components
of a
computing
system

Giorgio Giacinto 2019

coordination and control of the
use of the computer resources

Operating Systems 2

Computer
System
Organization

Giorgio Giacinto 2019 Operating Systems 3

Microprocessor

� Invention that brought about desktop and handheld
computing

� Contains a processor on a single chip

� Fastest general purpose processors

� Multiprocessors
� Each chip (socket) contains multiple processors (cores)

Operating SystemsGiorgio Giacinto 2019 4

Graphical
Processing
Units (GPU’s)

� Efficient computation on arrays of data using Single-
Instruction Multiple Data (SIMD) techniques pioneered
in supercomputers

� No longer used just for rendering advanced graphics
Also used for general numerical processing

� Physics simulations for games

� Computations for complex machine learning models

Giorgio Giacinto 2019 Operating Systems 5

Digital Signal
Processors
(DSPs)

� Streaming signals such as audio or video

� Used to be embedded in I/O devices like modems
Are now becoming first-class computational devices,
especially in handhelds

� Encoding/decoding speech and video (codecs)

� Provide support for encryption and security

Giorgio Giacinto 2019 Operating Systems 6

System on a
Chip (SoC)

� To satisfy the requirements of handheld devices, the
classic microprocessor is giving way to the SoC

� On the same chip
� not only the CPUs and caches

but also
� DSPs
� GPUs
� I/O devices (such as codecs and radios)

Giorgio Giacinto 2019 Operating Systems 7

Main Memory

� This is the core component of a computer system
� Each component reads from and writes to the main

memory

� The CPU can only execute instructions that are already
stored in the main memory.

Giorgio Giacinto 2019 Operating Systems 8

Main Memory
Organization

� Direct access, location independent
� RAM and DRAM (Dynamic Random Access Memory)

� ROM (Read-Only Memory) to store instructions and
data do not have to be (frequently) modified

� Memory organization
� An array of cells with equal fixed size called word
� Each memory cell has an associated address, i.e., the

position in the array

Giorgio Giacinto 2019 Operating Systems 9

Memory
Access

load <address>

� Transfer the content of the memory cell identified by
address into one of the CPU registers

store <address>

� Transfer the content of one of the CPU registers into
the memory cell identified by address

Giorgio Giacinto 2019 Operating Systems 10

Instruction
Execution
Cycle

Von Neumann Architecture

� The processor fetches the next instruction from the
memory address stored in Program Counter (PC)
register

� After the fetch phase, the Program Counter is
incremented by 1 unit

Giorgio Giacinto 2019 Operating Systems 11

START HALT
Fetch Next

Instruction

Fetch Stage Execute Stage

Execute

Instruction

Figure 1.2 Basic Instruction Cycle

CPU Registers

Giorgio Giacinto 2019

PC MAR

IR MBR

I/O AR

I/O BR

CPU Main Memory

System

Bus

I/O Module

Buffers

Instruction

0

1

2

n - 2

n - 1

Data

Data

Data

Data

Instruction

Instruction

Figure 1.1 Computer Components: Top-Level View

PC = Program counter

IR = Instruction register

MAR = Memory address register

MBR = Memory buffer register

I/O AR = Input/output address register

I/O BR = Input/output buffer register

Execution

unit

Operating Systems 12

An Example of
the execution
of the sum of
two numbers

Giorgio Giacinto 2019

2

PC300
CPU RegistersMemory

Fetch Stage Execute Stage

3 0 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

Step 1

•
•

PC300
CPU RegistersMemory

3 0 11 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR1 9 4 0

0 0 0 3

Step 2

•
•

PC300
CPU RegistersMemory

3 0 1
0 0 0 5

0 0 0 5

0 0 0 3

0 0 0 5

1 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 3

•
•

PC300
CPU RegistersMemory

3 0 21 9 4 0
301 5 9 4 1
302 2 9 4 1

1

940 0 0 0 3
941 0 0 0 2

AC
IR5 9 4 1

Step 4

•
•

PC300
CPU RegistersMemory

3 01 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 2

AC
IR2 9 4 1

Step 5

•
•

PC300
CPU RegistersMemory

3 0 31 9 4 0
301 5 9 4 1
302 2 9 4 1

940 0 0 0 3
941 0 0 0 5

AC
IR2 9 4 1

Step 6

•
•

3 + 2 = 5

Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

Operating Systems 13

Which size for
the main
memory?

� In principle all the instructions and data of the
programs in execution should be stored in the main
memory.
However…

� The memory size is usually limited by cost constraints

� The technology used to fabricate the main memory does
not support permanent storage.

Giorgio Giacinto 2019 Operating Systems 14

The Memory
Hierarchy C

os
t

Sp
ee

d

Giorgio Giacinto 2019

Figure 1.14 The Memory Hierarchy

InboardMemory

OutboardStorage

Off-lineStorage

Main

Memory

Magnetic Disk

CD-ROM

CD-RW

DVD-RW

DVD-RAM

Blu-Ray

Magnetic Tape

Cache

Reg-

iste
rs

Operating Systems 15

System Boot

� System Bootstrap
When the system is switched on, a small program
stored in a ROM (a.k.a. firmware) is executed

� all components are tested and initialised
� the operating system is loaded into main memory

� typically just a small portion, the kernel

� the operating system starts running
� the operating system keeps waiting for some event

Giorgio Giacinto 2019 Operating Systems 16

Events

� The execution of a program can be seen as the
execution of a sequence of instructions.

� Some events can break the continuous flow of
execution of instructions

� Events coming from a physical device
� interrupts

� Events generated by the program itself
� exceptions

hardware (i.e., division by zero)
system calls, i.e., a call for a service from the OS

Giorgio Giacinto 2019 Operating Systems 17

Interrupts START

HALT

Fetch next

instruction

Fetch Stage Execute Stage Interrupt Stage

Interrupts

Disabled

Interrupts

Enabled

Execute

instruction

Check for

interrupt;

initiate interrupt

handler

Figure 1.7 Instruction Cycle with Interrupts

Giorgio Giacinto 2019 Operating Systems 18

Interrupts and
Device Drivers

1. The user program
request the use of one
device

2. The operating system
sends the request to the
device driver

3. The device driver sets the
values of the registers of
the device controller

4. The device controller
starts the data transfer

5. After the data transfer is
completed, the controller
sends a signal to the
driver, the driver notifies
the operating system,
and the OS notifies the
user program

Giorgio Giacinto 2019 Operating Systems 19

Interrupt
timeline

Giorgio Giacinto 2019 Operating Systems 20

Direct
Memory
Access (DMA)

� Data transfers from one device to main memory can
be managed

� by the CPU

� by a specific hardware module called DMA

Giorgio Giacinto 2019 Operating Systems 21

How data
transfer works

Giorgio Giacinto 2019

thread of execution
instructions

and
data

instruction execution
cycle

data movement

DMA

memory

interrupt

cache

data

I/O
 request

CPU (*N)

device
(*M)

Operating Systems 22

CPU Organization

Giorgio Giacinto 2019 Operating Systems 23

Uniprocessing
and
Multiprocessing
Architectures

� Uniprocessor architectures
� A single CPU that is responsible for performing all tasks,

� Multiprocessor Architectures
� More than one CPU is available

� CPUs with different ISAs, e.g., GPU
� CPUs with the same ISA

� Current multicore processors are an evolution of
multiprocessor architectures

Giorgio Giacinto 2019 Operating Systems 24

Advantages of
Multiprocessing
Architectures

� Productivity
� increased throughput, i.e., more tasks can be completed

in a time unit.

� Economy of scale
� One multiprocessor system could be economically

preferable to a cluster of uniprocessor systems

� Reliability
� fault tolerance

� graceful degradation

Giorgio Giacinto 2019 Operating Systems 25

SMP
Symmetric
Multiprocessing

Giorgio Giacinto 2019

L1 Cache

Processor

Main
Memory

I/O
Subsystem

System Bus

CHIP CHIP CHIP

I/O
Adapter

Figure 1.19 Symmetric Multiprocessor Organization

L2 Cache

L1 Cache

Processor

L2 Cache

L1 Cache

Processor

L2 Cache

I/O
Adapter

I/O
Adapter

Windows,
macOS, Linux
support SMPSMP

Each operation is assigned to the first idle
CPU.
Asymmetric Multiprocessing
each CPU executes a specific task

Operating Systems 26

Multicore
systems

Giorgio Giacinto 2019

Figure 1.20 Intel Core i7-5960X Block Diagram

(a) Block diagram

(b) Physical layout on chip

Shared
L3Cache

I/O

C
or

e

C
or

e

C
or

e

C
or

e

M
em

or
y

C
on

tr
ol

le
r

C
or

e

C
or

e

C
or

e

C
or

e

Core 0

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

256 kB
L2 Cache

Core 1

• • •

256 kB
L2 Cache

4 8B @ 2.133 GT/s

Core 6

256 kB
L2 Cache

Core 7

256 kB
L2 Cache

20 MB
L3 Cache

DDR4 Memory
Controllers

PCI Express

40 lanes @ 8 GT/s

Figure 1.20 Intel Core i7-5960X Block Diagram

(a) Block diagram

(b) Physical layout on chip

Shared
L3Cache

I/O

C
or

e

C
or

e

C
or

e

C
or

e

M
em

or
y

C
on

tr
ol

le
r

C
or

e

C
or

e

C
or

e

C
or

e

Core 0

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

32 kB
L1-I

32 kB
L1-D

256 kB
L2 Cache

Core 1

• • •

256 kB
L2 Cache

4 8B @ 2.133 GT/s

Core 6

256 kB
L2 Cache

Core 7

256 kB
L2 Cache

20 MB
L3 Cache

DDR4 Memory
Controllers

PCI Express

40 lanes @ 8 GT/s

Intel Core i7-5960X

Operating Systems 27

Structure of the
Operating System

Giorgio Giacinto 2019 Operating Systems 28

Before the OS

Giorgio Giacinto 2019 Operating Systems 29

Read one record from file 0.0015 seconds
Execute 100 instructions 0.0001 seconds
Write one record to file 0.0015 seconds
TOTAL 0.0031 seconds

Percent CPU Utilization

=

0.0001
0.0031

= 0.032 = 3.2%

Figure 2.4 System Utilization Example

Uni
programming

If the CPU is much faster than the I/O system, then the
execution of one job at a time might result in the CPU
idle most of the time.

Giorgio Giacinto 2019 Operating Systems 30

Multi
programming

If we allow more jobs to run concurrently, the usage of
the CPU increases, as well as the throughput of the
system.

Giorgio Giacinto 2019 Operating Systems 31

Multi
programming

Giorgio Giacinto 2019 Operating Systems 32

Multi
programming

Giorgio Giacinto 2019

0%

0 5 10 15 20 25 30
minutes

time

(a) Uniprogramming

JOB1 JOB2 JOB3Job History

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

0%

0 5 10 15
minutes

(b) Multiprogramming

Figure 2.6 Utilization Histograms

JOB1
JOB2

JOB3

Job History

Printer

Terminal

Disk

Memory

CPU

100%
0%

100%
0%

100%
0%

100%
0%

100%

time

Operating Systems 33

Uni
Programming
Vs.
Multi
Programming

Uniprogramming Multiprogramming

CPU usage 20% 40%

Memory usage 33% 67%

Disk usage 33% 67%

Printer usage 33% 67%

Elapsed time 30 min 15 min

Throughput 6 jobs/h 12 jobs/h

Average response time 18 min 10 min

Giorgio Giacinto 2019 Operating Systems 34

Memory
Layout for
Multi
programmed
Systems

� The main memory should
always be filled with jobs to
keep the CPU working

� The operating system is in
charge of

� selecting the jobs to be
resident in memory

� scheduling the execution of
the jobs

� Managing interactive usersi

Giorgio Giacinto 2019 Operating Systems 35

Timesharing
systems

� Systems that allows interactions from multiple users

� The goals of the system are quite different from those
of a multiprogrammed system

� Multiprogramming seeks the maximization of the
throughput

� Time-sharing aims at reducing the response time to each
user

Giorgio Giacinto 2019 Operating Systems 36

Operating
System
components

� Multiprogramming and time-sharing were the the two
driving forces that motivated the development of the
components of an operating system

� Concurrency management
� Job and CPU scheduling
� Virtual memory
� File System Management
� Disk and Storage Management
� Data and Software Privacy and Security

Giorgio Giacinto 2019 Operating Systems 37

Tasks of the
Operating System

Giorgio Giacinto 2019 Operating Systems 38

Interrupts

� If no program is executing…

…the operating system should keep waiting

� The task of the operating system is to react to
interrupts that are generated by users’ programs

…However, the operating system is a program…

How this ambiguity has been addressed?

Giorgio Giacinto 2019 Operating Systems 39

Two operating
modes

� Each CPU has two modes of operation
� user mode
� kernel mode

� Privileged instructions can be executed only when the
CPU is in kernel mode (a.k.a. supervisor mode)

Giorgio Giacinto 2019 Operating Systems 40

Mode Switch

� Any CPU has an instruction that cause the mode
switch

� Only the operating system can execute this instruction

� Each time an activity is needed by the operating
system

� interrupt
� system call

then the CPU switches from user to kernel mode

At the end of the activity the CPU switches back to
user mode

It turns out the the operating system is strictly
coupled with the underlying hardware platform.

Giorgio Giacinto 2019 Operating Systems 41

Virtualization

� Virtualization can be seen as an extension of the
modes of operation of the CPU

� Modern CPUs support different levels of privileged
instructions called rings

� sets of privileged Instructions with more privileges that
user-level instructions and less privileges than kernel-
level instructions

� Intel 64
� 4 privilege levels, even if none of them is explicitly

related to virtualization

Giorgio Giacinto 2019 Operating Systems 42

Timer

� The operating system must control that no process
� enters an infinite loop
� owns some resources without releasing them at some

time (such as the CPU, main memory, I/O channels, etc.)

� To this end, a timer is included in the computer
hardware.

Giorgio Giacinto 2019 Operating Systems 43

Process
Management

� A coarse definition of process is the following:
a process is a program in execution on a computer

� The operations that the operating system performs
are the following:

� process creation and termination
� resource management (memory, CPU, I/O)

� suspend and resume process execution
� process synchronization and communication

(IPC – interprocess communication mechanisms)
� deadlock prevention and management

Giorgio Giacinto 2019 Operating Systems 44

Memory
management

� The main memory is the place where both instructions
and data are stored in the Von Neumann architecture

� Both the CPU and I/O devices need to get access to the
main memory

� The operating system and the underlying hardware
components implement specific mechanisms to
properly manage the memory hierarchy

� Note that the cache is not managed by the operating
system

Giorgio Giacinto 2019 Operating Systems 45

Permanent
Storage

� File system
� A structure to organise documents and program

permanently stored on disks, solid state media, etc.
� source code, binary code, user documents, images, music,

video, etc.

� Operations on files
� create / delete
� binding files with the device they are stored on
� backup and recovery

Giorgio Giacinto 2019 Operating Systems 46

Disk
management

� Disks represent the typical permanent storage device
� data on a SSDs are organised in the same way as a

mechanical disk

� Management tasks of the operating system
� free space
� file allocation
� scheduling

� to minimise the average response time in mechanical disks

Giorgio Giacinto 2019 Operating Systems 47

Memory
Hierarchy

Giorgio Giacinto 2019

Level

Name

Typical size

Implementation
technology

Access time (ns)

Bandwidth (MB/sec)

Managed by

Backed by

1

registers

< 1 KB

custom memory
with multiple
ports CMOS

0.25 - 0.5

20,000 - 100,000

compiler

cache

2

cache

< 16MB

on-chip or
off-chip
CMOS SRAM

0.5 - 25

5,000 - 10,000

hardware

main memory

3

main memory

< 64GB

CMOS SRAM

80 - 250

1,000 - 5,000

operating system

disk

4

solid state disk

< 1 TB

flash memory

25,000 - 50,000

500

operating system

disk

5

magnetic disk

< 10 TB

magnetic disk

5,000,000

20 - 150

operating system

disk or tape

Operating Systems 48

I/O
management

� The operating system is in charge of
� buffer management
� spooling - simultaneous peripheral operation online
� providing standard interfaces for device drivers
� managing device drivers

Giorgio Giacinto 2019 Operating Systems 49

Privacy &
Security

� The OS is in charge of executing different processes
from different users

� Protection of
� processes
� users
� the OS itself

� from errors caused by other processes or users
� casual errors as well as intentional errors!

Giorgio Giacinto 2019 Operating Systems 50

Data structures used by
the kernel

Giorgio Giacinto 2019 Operating Systems 51

Lists

Giorgio Giacinto 2019

data data data null

• ••

data null nulldata data data

• ••

data data data data

• ••

Singly linked list

Doubly linked list

Circularly linked list

Operating Systems 52

Stacks and
Queues

� Stack
� An ordered sequence of data where data can be inserted

or extracted from one side only, i.e., the top of the stack
LIFO (Last-In-First-Out)

� push inserts a new item onto the stack
� pop extracts the item, on top of the stack

� This structure is used by the OS to store local variables,
and return address to be used after the last instruction of
a function

� Queue
� An ordered sequence of data where insertion is

performed on one side, and extraction from the other
side, so that items are extracted in the same order as
they join the queue
LIFO (Last-In-First-Out)

Giorgio Giacinto 2019 Operating Systems 53

Trees

Giorgio Giacinto 2019

� Suited to represent hierarchies

� Binary search trees
� each node with two children
� the left node has a value less

than the parent node
� the right node has a value

greater than the parent node

Operating Systems 54

17

35

146 14 40326

12

Hash functions
and Bitmaps

� Hash functions
� Any function that maps data of arbitrary size to fixed-

size values
� e.g., a mapping between all students’ names and the set of

integers from 0 to 49
� Collisions

Depending on the function, and on the input size, two
ore more inputs could be mapped to the same output
value

� Bitmaps
� A bit array of size N can be used to store the binary

status of a set of N items
� e.g., the list of free disk blocks

Giorgio Giacinto 2019 Operating Systems 55

Computing
Environments

Giorgio Giacinto 2019 Operating Systems 56

Traditional
computing

� The meaning of traditional has evolved in the past
years

� Nowadays a traditional computer is a networked
computer

� Scientific and technical computation
� Graphic design and engineering projects
� Desktop publishing and Multimedia processing

� User’s programs and data may be stored on
� the local computer
� some remote servers

Giorgio Giacinto 2019 Operating Systems 57

Mobile
Devices

� Current mobile OSs exhibit the same functionalities as
traditional computers

� power management constraints
� memory size constraints

� Main features
� interaction by gestures and touch screens
� always connected
� localization services
� movement sensors
� other environmental or health related sensors

Giorgio Giacinto 2019 Operating Systems 58

Distributed
Systems

� All computers support networking

� Clusters of computers can be set-up to act as a single
server.

� The OS can be executed on multiple hardware devices
whose resources are considered as being part of one
large distributed computer

� distributed file system
� distributed process management

Giorgio Giacinto 2019 Operating Systems 59

Client-Server

� Computational intensive tasks are executed by
powerful server computers

Giorgio Giacinto 2019

Server Network

client
desktop

client
laptop

client
smartphone

Operating Systems 60

Peer-to-Peer

� Each node acts as a server for the other nodes

� A centralised registry can support the cooperation
between nodes

Giorgio Giacinto 2019

client

clientclient

client client

Operating Systems 61

Virtualization

� Emulation or virtualization of the CPU
� Concurrent execution of more than one operating

system (guests) on one piece of hardware
� Virtualisation software executed either directly on hardware

or as a program executed by a host OS

Giorgio Giacinto 2019

(a)

processes

hardware

kernel

(b)

programming
interface

processes

processes

processes

kernelkernel kernel

VM2VM1 VM3

manager
hardware

virtual machine

Operating Systems 62

Cloud
Computing

� Public cloud
� Private cloud

� Hybrid Cloud
� SaaS – Software-as-a-Service
� PaaS – Platform-as-a-Service

� IaaS – Infrastructure-as-a-Service

Giorgio Giacinto 2019 Operating Systems 63

Embedded
systems

� These systems are more and more part of our daily
lives as well as part of many production farms

� automotive
� aeronautics
� household appliances
� smartphones, Smart TV, game consoles, etc.
� robotics

� The operating system and the underlying hardware are
tightly coupled

Giorgio Giacinto 2019 Operating Systems 64

